martes, 15 de septiembre de 2009

MEDIDAS DE DISPERSIÓN

LA VARIANZA
Su concepto es análogo al de la varianza poblacional. No obstante esta expresión de cálculo de la varianza muestral no se utiliza mucho pues sus valores tienden a ser menores que el de la auténtica varianza de la variable (debido a que la propia media muestral tiene una varianza que vale un enésimo de la de las observaciones) Para compensar esta deficiencia y obtener valores que no subestimen la varianza poblacional (cuando estamos interesados en ella y no en la varianza muestral) utilizaremos una expresión, esencialmente igual que la anterior salvo que el denominador está disminuido en una unidad.

LA DESVIACIÓN ESTANDAR

La desviación estándar o desviación típica (σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva. Junto a la varianza -con la que está estrechamente relacionada-, es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

COEFICIENTE DE ASIMETRIA

Mide el grado de asimetría de la distribución con respecto a la media. Un valor positivo de este indicador significa que la distribución se encuentra sesgada hacia la izquierda (orientación positiva). Un resultado negativo significa que la distribución se sesga a la derecha.

Teorema de Chebyshev.

Si una variable aleatoria tiene una varianza o desviación estándar pequeña, esperaríamos que la mayoría de los valores se agrupan alrededor de la media. Por lo tanto, la probabilidad de que una variable aleatoria tome un valor dentro de cierto intervalo alrededor de la media es mayor que para una variable aleatoria similar con una desviación estándar mayor si pensamos en la probabilidad en términos de una área, esperaríamos una distribución continua con un valor grande de σ que indique una variabilidad mayor y, por lo tanto, esperaríamos que el área este extendida. Sin embargo, una desviación estándar pequeña debería tener la mayor parte de su área cercana a µ.

Teorema de Chebyshev: La probabilidad de que cualquier variable aleatoria X, tome un valor dentro de la κ desviaciones estándar de la media es al menos 1 – 1 / κ2.

No hay comentarios:

Publicar un comentario